13ª Mostra da Produção Universitária

Rio Grande/RS, Brasil,14 a 17 de outubro de 2014.

SÍNTESE DE 3,4-DIIDPROPIRIMIDINONAS UTILIZANDO ORGANOCATALISADORES AMINO SULFONICOS

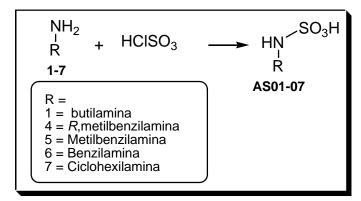
Hack, Carolina R. L.; Weber, Andressa, C. H.; Porciuncula, Larissa M.; Batista,
Thais C.; Flores, Darlene C. (autor/es)
D'Oca, Marcelo G. M. (orientador)
carolina.loppes@gmail.com

Evento: Encontro de Pós Graduação

Área do conhecimento: Ciências exatas e da terra

Palavras-chave: Organocatalise, diidropirimidinonas, ácidos graxos

1 INTRODUÇÃO


A organocatálise nos últimos anos vem ganhado destaque, devido à capacidade apresentada por moléculas orgânicas de baixo peso molecular em catalisar uma ampla gama de reações químicas mimetizando o papel do sítio ativo de uma enzima. Uma reação organocatalisada é aquela onde qualquer processo de catálise é efetuado por moléculas orgânicas e livre de metais¹.

Uma das reações onde a organocatalise vem sendo aplica é a Reação de Biginelli, onde são obtidas as diidropirimidinonas (DHPMs). Os compostos de Biginelli são heterociclos nitrogenados que despertam interesse em Química Orgânica e Medicinal por apresentarem uma variedade ampla de propriedades farmacológicas importantes. Na busca de novos candidatos à fármacos com atividade antitumoral, estudos *in vitro* mostraram que a diidropimidin-2(1*H*)-tiona monastrol² possui atividade antimitótica, podendo ser considerada um candidato promissor para o tratamento do câncer.

Atualmente é de grande interesse na área da química orgânica a busca por catalisadores que melhorem o rendimento da reação de Biginelli e que sejam ambientalmente corretos e de baixo custo. Dentre as variações catalíticas mais importantes destacam-se os ácidos de Bronsted, ácidos de Lewis,³ líquidos iônicos, ⁴ biocatalisadores e, nos últimos anos, os organocatalisadores.¹

Este trabalho tem por objetivo a síntese de novos organocatalisadores que serão aplicados a síntese de 3,4-Diidropirimidinonas, bem como a investigação da sua eficiência.

2 MATERIAIS E MÉTODOS

Esquema 1. Síntese do Organocatalisador

13ª Mostra da Produção Universitária

Rio Grande/RS, Brasil,14 a 17 de outubro de 2014.

A síntese das 3,4-diidropirimidin-2(1*H*)-onas graxas será realizada a partir da reação multicomponente de Biginelli, utilizando, ureia, tioureia, aldeídos e acetoacetato de metila ou acetoacetato graxo, na presença dos organocatalisadores, sob refluxo e agitação constante.

Posteriormente será realizada a caracterização e elucidação estrutural de todos os compostos sintetizados através de ponto de fusão, ressonância magnética nuclear de hidrogênio (RMN ¹H) e de carbono (RMN ¹³C) e espectrofotometria de infra-vermelho (IV).

3 RESULTADOS e DISCUSSÃO

Os experimentos mostraram até o momento uma eficiência satisfatória na capacidade catalítica desses novos compostos quando utilizados na reação de Biginelli, conforme se observa na tabela 1. Um ponto positivo que cabe ressaltar, é a capacidade desses compostos amino sulfônicos em suportar altas temperaturas sem se degradarem. Para estudos comparativos a reação foi realizada na ausência do catalisador mostrando um rendimento de 9%.

Tabela 1: Síntese das DHPMs na presença dos organocatalisadores

Entrada	Acetoacetato (R)	Aldeido	Catalisador (20 % mol)	Rendimento
1	Metil	Benzaldeido	AS01	75%
2	Metil	Benzaldeido	AS04	68%
3	Metil	Benzaldeido	AS05	67%
4	Metil	Benzaldeido	AS06	79%
5	Metil	Benzaldeido	AS07	65%
6	Estearil	Benzaldeido	AS04	56%
7	Estearil	3- Hidroxi benzaldeido	AS04	53%
8	Metil	Benzaldeido	-	9%

4 CONSIDERAÇÕES FINAIS

Considerando que a pesquisa ainda não está finalizada, pretende-se ainda investigar: a aplicação desses catalisadores em um número maior de reações, como por exemplo, utilizando outros aldeídos e acetoacetatos, e a possibilidade de se sintetizar catalisadores quirais a partir dessa metodologia.

REFERÊNCIAS

¹ Schreiner, P.R. Chem. Soc. Rev. 2003, 32, 289.

² Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Scheiber, S.L.; Mitchison, T.J.; *Science* 1999, 286, 971.

³Tu, S.; Fang, F.; Miao, C.; Jiang; Feng, Y.; Shi, D.; Wang, X. *Tetrahedron Lett.* 2003, 44, 6153.

⁴ Saha, S.; Moorthy, J. N. J. Org. Chem. 2011, 76, 396.