

DETERMINAÇÃO DO TEOR DE LIPÍDEOS E PERFIL GRAXO DA MICROALGA NANNOCHLOROPSIS OCULATA EM MEIO DE CULTIVO COM E SEM VITAMINA

LÜTKE, Sabrina F., MOURA, Renata R. de, MARTINS, Tatiana G., RAUPP, Stela D'OCA, Marcelo G. M. sabrina_lutke@yahoo.com.br

Evento: XXIV Congresso de Iniciação Científica Área do conhecimento: Ciências Exatas e da Terra

Palavras-chave: microalgas, vitamina, lipídeos

1 INTRODUÇÃO

As microalgas são micro-organismos oxigênicos fotossintetizantes procarióticos e eucarióticos que podem ser considerados ideais para a produção de biodiesel, visto que apresentam alto teor de lipídeos. Segundo a literatura, as vitaminas estão envolvidas na formação de ácidos graxos. Em vista disto, o presente trabalho tem por objetivo determinar o teor de lipídeos e o perfil graxo da microalga *Nannochloropsis oculata c*ultivada com e sem a adição de vitaminas.

2 REFERENCIAL TEÓRICO

A microalga *Nannochloropsis oculata* é reconhecida por sua produção de óleo (22-29% de biomassa peso seco)⁴ apropriada para a produção de biodiesel. O óleo extraído a partir desta espécie consiste de ácidos graxos saturados e insaturados, tais como o ácido palmítico, ácido oleico e ácido linoleico, que são ácidos graxos potenciais para a produção de biodiesel.

As vitaminas usadas no meio de cultivo atuam como co-fatores de diferentes enzimas no metabolismo de ácidos graxos³, sendo possível que, dessa forma, a presença desses compostos leve ao aumento da produção de lipídeos pelas microalgas.

3 MATERIAIS E MÉTODOS

As extrações foram realizadas nas amostras de *N. oculata* previamente secas, maceradas e peneiradas. O método de extração empregado foi realizado de acordo com o proposto por Zhu *et al.*⁵ a partir de 0,5 g de cada amostra, 1,5 mL de clorofórmio:metanol (2:1), banho de ultrassom por 20 min a temperatura ambiente, seguido de centrifugação por 5 min a 2000 rpm.⁶ Em seguida os extratos lipídicos foram derivatizados com BF3 em metanol segundo Metcalfe e Schmitz (1961).⁷ O perfil graxo foi determinado por cromatografia gasosa com detecção por espectrometria de massas (GC-MS).⁸

4 RESULTADOS e DISCUSSÃO

Os resultados obtidos até o momento estão apresentados nas Tabelas 1 e 2.

Tabela 1 - Teor de lipídeos da microalga Nannochloropsis oculata cultivada com e sem a adição de vitaminas

Amostra	Teor médio de lipídeos (%)
NO SV1	26,28±0,12
NO SV2	19,4±1,33
NO SV3	16,7±0,5
NO CV1	27,32±1.14
NO CV2	33,88
NO CV3	39,47

Tabela 2 - Perfil graxo da microalga *Nannochlorepsis oculata* cultivada em meio com e sem a adição de vitaminas

o com a dalgae de maninae								
FAME	NO SV1	NO SV2	NO SV3	NO CV1	NO CV2	NO CV1		
C12:0	nd*	nd*	nd*	$0,6\pm0,03$	0,33±0,01	0,67±0,02		
C14:0	6,0±0,26	5,77±0,13	6,46±0,06	6,70±0,06	7,15±0,02	7,54±0,09		
C15:0	$0,68\pm0,05$	$0,7\pm0,06$	$0,60\pm0,02$	1,22±0,04	$0,74\pm0,02$	1,52±0,02		
C16:1	22,75±0,1	25,7±0,27	24,24±0,27	21,93±0,05	23,26±0,09	22,60±0,19		
C16:0	33,49±0,31	$35,3\pm0,4$	30,54±0,08	33,59±0,08	23,27±0,13	31,56±0,04		
C17:0	$0,64\pm0,03$	0,41±0,01	0,45±0,01	0,93±0,02	0,61±0,01	1,05±0,02		
C18:2	2,71±0,04	2,89±0,01	3,73±0,04	3,25±0,04	2,25±0,02	4,14±0,03		
C18:1 _c	1,29±0,04	1,46±0,02	1,10±0,01	1,51±0,03	1,32±0,03	1,94±0,01		
C18:1 _t	13,1±0,13	10,07±0,29	10,30±0,03	11,75±0,14	12,14±0,1	9,32±0,14		
C18:0	1,77±0,04	1.16±0,02	0,96±0,01	2,17±0,02	1,44±0,02	2,08±0,04		
C20:5	13,63±0,17	13,3±0,31	17,22±0,16	12,24±0,08	13,57±0,08	12,73±0,27		
C20:4	$3,92\pm0,06$	3,13±0,05	4,38±0,06	4,15±0,03	3,93±0,03	4,84±0,1		

^{*} não determinado

Com base na Tabela 1 pode ser observado que houve um aumento de mais de 40% no teor de lipídeos da microalga N. oculata quando adicionado vitaminas ao meio de cultura. No perfil graxo não foi observado grandes variações nas amostras cultivadas com vitaminas ao compará-las às amostras cultivadas sem vitaminas.

5 CONSIDERAÇÕES FINAIS

Portanto, de acordo com os resultados encontrados até o momento, ocorreu um aumento na produção de lipídeos da microalga cultivada com a adição de vitaminas, apontando que esses compostos possuem um papel importante no cultivo.

REFERÊNCIAS

CHISTI, Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25, 294-306.

ZHU, C.J., LEE, Y.K.Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 1997, 9, 189–

⁶ D'Oca, M.G.M., Viêgas, C. V., Lemões, J. S., Miyasaki, E.K., Moron-Villarreyes, J A., Primel, E. G., Abreu, P. C. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass and bioenergy, 2011, 35, 1533-1538.

METCALFE, L.D., SCHMITZ, A.A. 1961. The rapid preparation of fatty acids esters for gas chromatography analysis. Anal Chem, 1961, 33, 363-364.

ALVES-SOBRINHO, R. C. M.; VAUCHINSKI, L.; MOURA, R. R.; PRIMEL, E. G.; ABREU, P. C.; D'OCA, M. G. M. FAME Production and Fatty Acid Profiles from Moist Chlorella sp. and Nannochloropsis oculata Biomass. J Am Oil Chem Soc, 2015, 92, 423-430.

² DEMIRBAS, A. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. *Applied* Energy, 2011, 88, 10, 3541-3547. 3 CROFT, M.T., WARREN, M.J., SMITH, A.G. Algae need their vitamins. *Eukaryotic Cell*, 2006, 5, 1175-1183.

⁴ MATA, T.M., MARTINS, A., CAETANO, N.S. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. *Energy Rev.*, 2010, 14 (1), 217–232