

Autossintonia de Controladores Feedback P, PI e Fuzzy Sugeno em simulação da automação de pH em fotobiorreatores

WIEGAND, Gabriel Mascarenhas (autor)
MALLMANN, Christian (autor)
DUTRA PEREIRA, Renato (orientador)
gabrielmwie@gmail.com

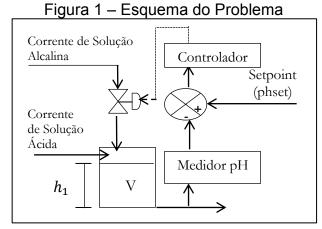
Evento: XXIV Congresso de Iniciação Cientifica

Área do conhecimento: Operações Industriais para Indústria Química

Palavras-chave: otimização; PSO; reação de neutralização;

1 INTRODUÇÃO

A utilização de reatores bioquímicos, ou biorreatores, é cada vez mais comum em uma grande variedade de processos. O seu desempenho é afetado por diversas variáveis, sendo uma delas o pH do meio.


O objetivo do presente trabalho foi realizar a simulação da dinâmica do pH e o controle da neutralização usando três leis: proporcional, proporcional-integral e fuzzy. Além disso, fazer a autossintonia dos parâmetros para encontrar a melhor performance para cada lei de controle em estratégia feedback.

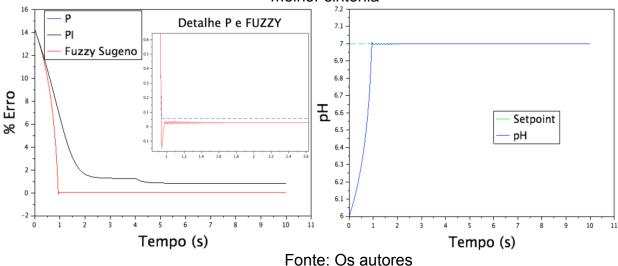
2 REFERENCIAL TEÓRICO

O problema de controle automático de pH é fortemente não-linear (SHINSKEY, 1973). A modelagem matemática usada foi a de parâmetros concentrados de acordo com a metodologia de Franks (1972). As leis P e PI em uma estratégia feedback foram implementadas de acordo com o algoritmo posição conforme Seborg (2011). A implementação de controladores Fuzzy foi baseada no algoritmo de Takagi, Kang e Sugeno (1985). A melhor sintonia foi determinada com base na otimização do somatório do erro quadrático por enxame de partículas de Kennedy e Eberhart (1995).

3 MATERIAIS E MÉTODO

A figura a seguir apresenta a malha fechada de controle utilizada para a modelagem do sistema.

Fonte: Os autores



O código foi implementado em Scilab 5.5.2 sendo utilizado o método de Euler para a resolução das equações diferenciais ordinárias que envolvem o balanço material do sistema.

4 RESULTADOS e DISCUSSÃO

As figuras 2a e 2b apresentam os resultados obtidos.

Figura 2 – a) Gráfico do erro percentual ao longo do tempo b) Gráfico da melhor sintonia

Observa-se na figura 2a que a utilização das leis P e Fuzzy Sugeno leva a um resultado muito parecido. Porém, esta leva a um erro percentual final melhor do que aquela. Portanto, foi apresentado apenas o gráfico do controle ótimo do pH com a utilização da lei Fuzzy.

5 CONSIDERAÇÕES FINAIS

Através da implementação em Scilab obteve-se um bom resultado de desempenho em malha fechada para as leis P e Fuzzy Sugeno. Além disso, pode-se observar que através da utilização do método PSO foram encontrados os valores ótimos dos parâmetros de sintonia, com baixo erro quadrático acumulado.

REFERÊNCIAS

FRANKS, R. G. E., Modeling and Simulation in Chemical Engineering. New York, John Wiley & Sons, 1972.

KENNEDY J., EBERHART, R.C. Particle Swarm Optimization. Proc. IEEE Internacional Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, IV: 1942-1948, Perth, Australia, 1995.

SEBORG, D.E.; EDGAR, T.F.; MELLICHAMP, D.A. Process Dynamics and Control. New York, John Wiley & Sons, 2011.

SHINSKEY, F.G., pH and pION Control in Process and Waste Streams. New York, John Wiley & Sons, 1973.

TAKAGI, T., SUGENO, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. on systems, man, and cybernetics, 1985.