

Síntese de alquilidenos a partir de aldeídos alifáticos, utilizando [Pyrr][CH₃COO] como catalisador.

Alves Sobrinho, Rui Carlos Medeiros Oliveira, Patrick Martins de Hack, Carolina Rosa Lopes Montes D'Oca, Caroline da Ros Montes D'Oca, Marcelo Gonçalves Montes ruialves.furg@gmail.com

Evento: XVII Encontro de Pós-Graduação Área do conhecimento: Química Orgânica

Palavras-chave: alquilidenos, aldeídos alifáticos, líquidos iônicos

1 INTRODUÇÃO

Os alquilidenos são produtos da condensação de Knoevenagel de compostos 1,3-dicarbonílicos e eletrófilos. Alguns dos compostos obtidos por esta reação, vem atraindo especial atenção no meio científico, devido a suas várias aplicações, seja na indústria¹, e mais recentemente como possíveis ativadores/desativadores da histona acetiltransferases e, na apoptose de células de leucemia².

2 REFERENCIAL TEÓRICO

A condensação de Knoevenagel apresenta grande importância na química orgânica, devido à formação de ligações dupla C-C, sendo esta, útil como precursora em diversas rotas sintéticas³. Além disso, esta reação é citada como sendo uma etapa útil na indústria, onde seus derivados são utilizados para a produção de agentes anti-incrustantes, herbicidas e inseticidas¹ e, mais recentemente, foram descritas como sendo moléculas biológicamente ativas, causando a apoptose de células de leucemia e sendo ativadoras/inibidoras da histona acetiltransferases².

Desde 1898, quando foi descrita por Emil Knoevenagel³, esta reação tem sido foco de vários estudos¹, que buscam, entre outras possibilidades, a variação estrutural, como também a otimização das condições reacionais, que em geral primam pela busca de uma rota sintética ambientalmente amigável. Neste contexto, o emprego de líquidos iônicos (LIs) surgiram como uma opção "mais verde" aos solventes orgânicos usualmente utilizados⁴, outra funcionalidade deles, é sua emprego como catalisadores¹, estas duas propriedades somadas à baixa volatilidade, não serem inflamáveis, termicamente estáveis e possibilidade de reutilização quando catalisadores, fazem dos LI ambientalmente corretos⁴.

Com isso o objetivo deste trabalho, foi à síntese de alquilidenos, obtidos pela condensação de Knoevenagel, empregando a utilização de Ll, sem solventes, em condicões reacionais brandas.

3 PROCEDIMENTO METODOLÓGICO

A condensação de Knoevenagel se deu a partir da adição do acetoacetato e diversos aldeídos e resfriada a 0°C, após o LI foi adicionado e, a reação foi mantida por uma hora e acompanhada por TLC. A seguir o meio foi solubilizado em acetoacetato e lavado com água destilada, seco com Mg₂SO₄ e evaporada a pressão reduzida Figura 1.

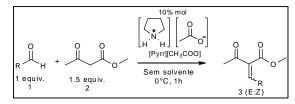


Figura 1: Esquema reacional da condensação de Knoevenagel

4 RESULTADOS e DISCUSSÃO

Tabela 1. Condensação de Knoevenagel utilizando o [Pyrr][CH₃COO] na presença de diferentes aldeídos.

Ent.	Aldeídos	Alquilid.	Conversão razão E:Z	Ent.	Aldeídos	Alquilid.	Conversão razão E:Z
1	H 1a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 (1:2)	5	0) ₇ H	0 0 77 3e	72 ^(*) (1:2) ^(*)
2	О 1b	3b	77 (1:1,8)	6	O H 1f	o o o o o o o o o o o o o o o o o o o	90 (1:2,1) ^(*)
3	0 1c	o o o o o o o o o o o o o o o o o o o	80 (1:1,5)	7) ₁₀ H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75 (1:2,5) ^(*)
4	0 H 1d	3d	89 (1:2,1) ^(*)	-	-	-	-

(*) Isolado

5 CONSIDERAÇÕES FINAIS

Os alquilidenos alifáticos foram obtidos com rendimentos satisfátórios, com valores entre 72 a 90% para os diferentes aldeídos. Rendimentos semelhantes foram obtidos por Milite e colaboradores, em sua pesquisa os autores chegaram aos alquilidenos alifáticos com valores que variaram entre 83 e 88%, utilizando ácido acético e piperidina como catalisadores, diclorometano como solvente por 1 hora na presença de peneira molecular¹.

REFERÊNCIAS

- 1. Forbes, David C.; Law, Amanda M.; Morrison, Doug W.; Tetrahedron Letters, v. 47, p. 1699–1703, 2006.
- 2. Milite, Ciro; Castellano, Sabrina; Benedetti, Rosaria; et. al.; Bioorganic & Medicinal Chemistry, v. 19, p. 3690–3701, 2011.
- 3. Knoevenagel, Emil; Berichte der deutschen chemischen Gesellschaf, v. 31, p. 2596-2619, 1898.
- 4. Wang, Yun; Shang, Zhi-cai; Wu, Tian-xing; Fan, Ji-cai; Chen, Xiang; Journal of Molecular Catalysis A: Chemical, v. 253, p. 212–221, 2006.